Construction

Saying farewell to SAM volunteers

SAM team and B2 staff at SAM, Biosphere 2

Yesterday we said goodbye to volunteers Jolene Varga and Rob Ronci (far left) from Colorado. They lived on the Biosphere 2 campus and worked with us at SAM for a full week. Thank you for jumping into the fire of the final week before pressure tests!

We also bid safe farewell to Trenton Kenney (back row, between Rob and Kai) from the University of Minnesota. “Kenney” was with us for three weeks and worked on just about every aspect of the project. We’ll miss your incredible cooking, fun anecdotes, and updates from the halls of NASA. But thank goodness my First Aid kit will no longer be used a few times each day!

Natasha Loving (front left, red shirt) is with the University of Arizona and provided her second week of volunteer work at SAM (Thr/Fri). She will be working with us over the summer, receiving credit for her work at SAM. Thank you for your diving into every project handed to you, and for singing while you worked as your voice echoed up into the Test Module—it was quite relaxing.

(SAM developers Trent Tresch and Kai Staats are in beige and black shirts, respectively)

Katie, Brittany, and John (right side) of the Biosphere 2 management and research staff, your support and enthusiasm for this project continues to be imperative to our success—thank you!

By |2021-06-30T05:28:23+00:00June 27th, 2021|Categories: Construction, Visitors to SAM|0 Comments

SAM Construction – Resealing the Test Module Lung

Test Module at Biosphere 2

Diagram of the Test Module and Lung, circa 1987

The Test Module lung was developed as a “method of managing the effects an internal temperature and external barometric pressure change could cause in a fixed, sealed, glass structure. This problem was solved with a variable volume system joined to the module by an air duct. With increased temperature or decreased barometric pressure in the Test Module compared to the out- side environment, the variable chamber expands; with a decrease in temperature or a increase in pressure, the chamber contracts. The lung structure provides an effective means to prevent the possibility that the Test Module would implode or explode when subjected to these forces. The reservoir of air provided an increased buffering; adding approximately 20-40% to the total atmospheric volume. The weight of the pan on the lung structure insured a positive displacement from inside the closed system to the outside.” — Abigail Alling, Linda Leigh, Taber MacCallum, and Norberto Alvarez-Romo. Biosphere 2 test module experimentation program. Biological Life Support Systems 23 (1990): 32.

This week was the last, big push for resealing the Test Module and lung—dozens of small details and a few substantial undertakings before our first pressure tests on Monday.

There are 18 points at which the Test Module pressure vessel is penetrated, including the entrance and a 7-port gas exchange manifold. In the 1987-89 test runs these served various purposes: monitoring the internal air and water (drinking, waste, marsh); moving sensor data over physical cables; exchanging hot and cold water for the heat exchanger then mounted in the overhead space frame. The clean water inlet will be reainted, but used sparingly (everything that goes in, stays in). The 3″ diameter copper feeds for the heat exchanger are terminated and capped. Since the ’80s much has changed in data transmission. Now a single wireless feed can readily transmit a vast quantity of real-time data and video. However, two hard line connections (Ethernet, USB) will be installed in order to rebuild or update computers and embedded devices (e.g. WiFi router), and as a back up should the wireless go down.

As such, we have reduced the number of ports to:

  • A fresh water inlet
  • Wired data (Ethernet + USB)
  • Electrical feeds from the external, primary panel to the internal sub-panel
  • Continued use of the original, 7-port gas exchange manifold
  • Two new manifolds for the mini-split heat pumps (coolant, power)

The lung is an adjacent structure connected to the Test Module by means of a 100 cubic foot, underground corridor (tube) large enough to crawl through. The lung is composed of a concrete structural frame and welded steel, cylindrical wall and floor. The upper lip of the cylinder is sealed to the larger end of the flexible rubber membrane (not unlike the rubber used on inflatable river rafts) from which is suspended a 22 foot diameter steel pan which itself is attached to the lower end of the membrane, and re-sealed (per our effort today). The area above the pan is open to the outside air. The area below the pan is an extension of the Test Module volume itself, with air movement through the restricted corridor.

The lung also has more than 20 penetrations. All but five were capped or plugged. As with the Test Module, all unused ports in the lung are sealed with Teflon tape over threaded plugs or caps.

As such, the functional ports are:

  • A single feed gas manifold (may or may not be retained)
  • Lung inflation fan with 3″ ball valve
  • Electrical feed to lights
  • Water column pressure release “P” trap

The inflated lung provides a positive pressure internal to the living space, an automated compensation for both internal temperature changes and external barometric pressure changes, and a buffer such that for the duration of a simulation, a hermetic seal may be maintained. The better the total seal, the longer a simulation can run without adding outside air.

When the Test Module and lung were inspected in the fall of 2020, it was clear that a great deal of work would be needed to regain a fully sealed function. The curved steel ring segments that held the rubber membrane in place were completely rusted from thirty years of water and weather, to the point that many of the threaded rods simply snapped off or turned to dust in one’s fingers.

Kai, Trent, and a host of volunteers have worked on various aspects of lung repair since January ’21, focused on patching the membrane itself, restoring the surface of the lower ring, welding 220 new threaded rods (studs), sealing against further rust, and then, finally, restoring the seal with a new set of individual 4″ stainless steel plates, replacing the nine heavily rusted angle iron rings segments. Furthermore, the outer shell of the lung has been completely sealed with silicone caulk and a 100% elastomeric such that only in the worst storms might a small amount of wind driven rain find its way onto the upper, external facing side of the membrane.

As of the posting of this photo essay, the silicone is a half dozen hours into a 72 hours cure. We are confident that we have a solid seal between the membrane and the lower ring of the steel pan. With the lower lung door rebuilt and ready to be installed there are no known open ports or holes in the entire pressure vessel. However, we remain aware that one or more holes may exist and that no system is fully sealed.

Our fingers are crossed for success in pressurizing the Test Module for the first time in thirty years!

Stay tuned!

By |2021-07-05T20:43:20+00:00June 25th, 2021|Categories: Construction|0 Comments

SAM Construction – Dry run of the Test Module Lung a success!

Dry test of lung inflation a success! SAM at Biosphere 2 Dry test of lung inflation a success! SAM at Biosphere 2 Dry test of lung inflation a success! SAM at Biosphere 2

The Test Module lung was developed as a “method of managing the effects an internal temperature and external barometric pressure change could cause in a fixed, sealed, glass structure. This problem was solved with a variable volume system joined to the module by an air duct. With increased temperature or decreased barometric pressure in the Test Module compared to the out- side environment, the variable chamber expands; with a decrease in temperature or a increase in pressure, the chamber contracts. The lung structure provides an effective means to prevent the possibility that the Test Module would implode or explode when subjected to these forces. The reservoir of air provided an increased buffering; adding approximately 20-40% to the total atmospheric volume. The weight of the pan on the lung structure insured a positive displacement from inside the closed system to the outside.” — Abigail Alling, Linda Leigh, Taber MacCallum, and Norberto Alvarez-Romo. Biosphere 2 test module experimentation program. Biological Life Support Systems 23 (1990): 32.

The “lung” is a pressure regulation and air storage system first tested 33 years ago as part of the Test Module program. It was then improved upon and scaled to a much larger volume for the Biosphere 2 proper. Today Trent Tresch and volunteer Rob Ronci of Colorado were successful in conducting a dry run inflation of the refurbished Test Module lung.

With the lower lung door only partially sealed, the electrical sub-panel ports not yet complete, and one known leak in the Test Module space frame structure, the lung membrane inflated and rose to an inverted position in just a few minutes of running the inflation fan.

This bodes well for what we believe will be a fully functional test of the lung early next week.

Trent Tresch, Rob Ronci preparing dry-run inflation of the lung at SAM, Biosphere 2 Rob Ronci preparing dry-run inflation of the lung at SAM, Biosphere 2

By |2021-07-05T20:43:59+00:00June 24th, 2021|Categories: Construction|0 Comments

SAM Construction – A race to the finish!

Trent Tresch, Sean Gellenbeck install a new inflation system for SAM at Biosphere 2

We are just ten days from the conclusion of Phase I of construction of SAM, and a week from the start of a series of pressurized tests in which we will monitor temperature, humidity, CO2, O2, and both interior and exterior atmospheric pressures as we seal the Test Module for varied durations of time.

June 20 also marks five months labor at the SAM analog site, from the early efforts in pushing back the desert growth to stripping the Test Module interior down to the frame and grinding, sanding, and cleaning the lung pan, ring, and membrane. In putting it all together again we have primed and painted, welded and wired, shoveled, cut, caulked, sealed, glued and cemented from sunrise to sunset, four to five days a week since January 20.

This kind of adventure may not take its participants across high seas or through dense jungles, but the arduous effort is rewarding in a similar manner. A passion for achieving difficult goals, attention to detail, problem solving, and working within a highly capable, agile team. Our race to the finish is not one of competition with others, but one of upholding a pledge to ourselves, partners, and investor Tech Launch Arizona that we will by the close of the University of Arizona fiscal year refurbish and revive the 1987 Biosphere 2 prototype Test Module as the cornerstone of SAM.

This is our list of actions items that remain, with one week to complete them all:

  • Install two 2 ton mini-split heat pumps (air conditioning).
  • Complete reconstruction of the sealed, lower lung door.
  • Apply the remaining patches to the lung membrane.
  • Patch the one known exterior break in the original silicone sealant.
  • Run electrical power from the exterior 100A service to the sub-panel; then
  • Build-out four electrical 120V sockets for interior use; and
  • Wire the overheads lights to a switch.
  • Fully bleach and scrub the lung interior.
  • Install the interior manual pressure release valve.
  • Conduct a dry pressure test before re-attaching the lung membrane to the ring.

Thank you Sean Gellenbeck, aerospace engineer at Paragon Space Development Corporation and PhD student at the University of Arizona for stopping by SAM and lending an expert hand! Your experience with varied materials and rapid development was well received!

By |2021-06-27T01:39:49+00:00June 21st, 2021|Categories: Construction|0 Comments

It’s really, really hot

113F in the Test Module, SAM at Biosphere 2

Notice how completely casual Trenton and Natasha appear, despite the intense heat?! As it has been said many times, “It’s a dry heat” We soak our outer shirts with the hose every thirty minutes, enjoy the constant breeze in this high desert region, and drink a lot of water.

The air conditioning units will be installed in one week!

By |2021-06-22T06:30:36+00:00June 17th, 2021|Categories: Construction|0 Comments

SAM Construction – Preservation for the next generation

A bit of overspray!

The Test Module was designed and built as a prototype for the Biosphere 2 in 1987. It was not likely conceived that 33 years later it would be repurposed, sealed up again as a hermetically sealed Mars habitat analog. While the greenhouse (controlled environment) structure itself seems to have held up quite well to the sun and rain of three decades, the lung suffered from a great deal of water collecting on top of the lung pan due to the upper shell of the lung not having been sealed.

The inner sheets of steel were only riveted to the underside of the visible steel ribs such that all precipitation quickly found its way inside, collecting in the bottom of the pan. A great deal of work has been applied to restore the pan, and the full exterior of the lung shell sanded (twice), washed, primed, and painted. The upper, triangular roof elements were coated in a 100% silicone elastomeric while the ribs on the side walls will be sealed with a silicone caulking.

This should inhibit the majority of continue corrosion and degradation over the coming years

Trent painting the lung shell at SAM, Biosphere 2 Kai painting the lung shell at SAM, Biosphere 2

By |2021-06-26T22:04:04+00:00June 10th, 2021|Categories: Construction|0 Comments

SAM Construction – At the Close of 4 Months

Test Module at night, SAM at Biosphere 2

When Trent, Tim, Terry, John and I dove into the refurbish of the Biosphere 2 Test Module the last week of January, we were overwhelmed by the scope of what lay before us. The lists guiding our effort week to week grew as we discovered projects within projects, as only the hidden gems of a remodel can do.

Yet each day we felt accomplished. Broad, sweeping strokes of physics labor left visible imprints on the landscape of the SAM construction site. Removing the old heat exchanger, cutting up electrical conduit and wiring, and the sanding and painting of the exterior. Physically exhausted, sore hands and feet, each day of tearing down was a day closer to building again.

Then there was a middle time when we were continuing to remove the old while installing the new. Those days were also satisfying, but the effort to find particular parts and assemblies grew to consume as much time as the application or installation itself.

Now, with just one month to go until our first round of funding is complete and our deliverable of a complete first stage due, the project is terribly exciting and sometimes equally frustrating. So many loose ends are coming together! Yet the pieces that remain are complex and multi-faceted, not just a coat of paint or a trench dug to a certain depth. We are down to the stuff that will make or break the function of SAM—determine if SAM will work as a sealed vessel able to hold it’s atmosphere, or lose pressure more quickly than anticipated.

We are now focused on the re-seal of the lung and windows on the west side of the Test Module, install of the mini-split A/C units, and preparation for the first pressure and CO2 levels test. At this critical stage, it feels good to look back since January 20 and appreciate all we have accomplished:
– initial repair (grinding, sanding) of the lung plate
– prep and apply silicone elastomeric to the external top of the lung shell
– prep and first coat of paint of the external, vertical lung shell
– remove debris from the interior of the lung shell
– remove metal ring segments that bound the membrane to the lung plate
– power wash and scrub EPDM membrane
– extensive research into paints for interior, exterior
– cleaning, cleaning, and more cleaning of the Test Module
– removal of the original data collection boxes and visitor signage
– grinding, sanding, and 2 coats primer to the TM base
– removal of the massive heat exchanger and steel platform
– removal of all electrical components; rewiring of the panel
– seal 21 ports and refurbish of the gas exchange manifold
– removal of the two grow beds and wood floor
– scraping, brushing, cleaning (3x) the stainless steel floor
– removal of all former data collection devices and cabling
– pressure wash the entire TM exterior; hand-scrub windows
– application of silicone membrane to the top of the TM
– sand entire interior of the TM; prime primary support beams
– test of window films for closest approximation to lightfall on Mars
– acquisition of a CO2 scrubber from Paragon
– full pressure suit test with Dr. Cameron Smith, Portland State
– removal of the original computer terminal outside the TM
– removal of two dozen root balls from the surrounding yard
– drain water from steel beams; mitigate rust
– apply silicone elastomeric to top and 45 degree windows on the TM
– apply seam seal and acrylic elastomeric to the TM porch roof
– shuffle four windows on the west side of the TM in prep for window tint and re-seal
– apply window tint, reducing optical light by 50% to match that on Mars
– grind and sand the lung ring segments
– attach unistrut and electrical disconnects to the south wall of the TM
– attach unistrut mounts for electrical and water walls
– move a birds nest to save the chicks from construction
– dig a ditch from the 200A electrical panel to the TM to power the HVAC
– pour a new concrete footing for the 200A electrical panel
– pour a concrete slab on the south side of the TM, to the lung
– remove all old threaded studs from the lung plate
– weld all new threaded studs to the lung plate
– remove lung inflation blower, clean, and test
– initiate removal of the five failing greenhouse structure in prep for our Mars yard
– continued development of the Mars yard
– design and initial development gravity off-set rig
– research into the type and cost of shipping containers (quarters)

With the close of May we completed the installation of the new power feed that will bring electricity to the mini-split heat pumps (heating, cooling for the TM) and eventually, to the living space for the inhabitants. We also removed the lung inflation blower, cleaned, and tested this thirty year-old fan. It works perfectly! Next, we will build a rig to attach the motor in a new location, adjacent to the lung itself instead of in the former, boiler building.

By |2022-11-12T17:38:34+00:00June 3rd, 2021|Categories: Construction|0 Comments

SAM Construction – From Red Sands to Red Planet

Colleen Cooley using a stud welder at SAM, Biosphere 2

This week Colleen Cooley, MSc visited SAM from the Diné Bikéyah (Navajo land) of the four corners region of Arizona, Utah, Colorado, and New Mexico. Colleen brought her tenacity for detail, creative solutions, fearless engagement of physical labor and stimulation for good conversations.

A raft guide of more than a decade Colleen is a consultant, volunteer, and advocate for various not-for-profit conservation organizations that work to find sustainable solutions to protect land, air, and water in the American Southwest. She brings a keen awareness of “water is life” in a region of our country that is only drying year after year. We discussed how as with the original Biosphere 2 our effort to build a hermetically sealed habitat for bioregeneration helps prepare us for living on another planet while at the same time informs how we can improve our interaction with our first home, here on Earth.

So much of our modern psyche is built on the false narrative that “technology will save us” when in fact our personal actions and life style choices (for those of us privileged to choose a “life style”) are what got us in this mess in the first place, but can help us move to a more sustainable future.

In her time volunteering at SAM, Colleen was immediately a member of our team, exclaiming “Let’s get it done!” when we entered the lung by headlamp (at 9 pm) to conduct our first stud welds, something none of us had experienced before. Thank you Colleen for five days of shoveling, drilling, welding, and motivation!

Don't mess with Colleen! SAM at Biosphere 2 Colleen Cooley shoveling dirt at SAM, Biosphere 2 Colleen Cooley measuring placement of new studes in the Test Module lung, SAM at Biosphere 2 Colleen Cooley placing rebar, SAM at Biosphere 2

Colleen is featured in a short documentary called “Water Flows Together” that reminds us of the importance of water conservation and protection, for everyone.

By |2021-06-12T22:36:39+00:00May 21st, 2021|Categories: Construction, Visitors to SAM|0 Comments

Mars is for the birds

Hungry birds! SAM at Biosphere 2

As with all construction projects, there are unknown hurdles and roadblocks, physical and logistical challenges that slow forward progress. How we deal with each of these defines the integrity of the project, in some ways more than any other factor.

Birds nest at SAM, Biosphere 2

Trent was preparing to rebuild the lower lung door when he discovered a bird nest on the high, narrow ledge of the old steel door frame. In the nest were four recently hatched chicks, their mother distraught by our disruption of her feeding. The grinding, sanding, and welding over the subsequent days would surely cause further disruption to their health and maturation at this critical stage.

Birds nest, SAM at Biosphere 2

I called my childhood mentor and good friend Ron Spomer, avid outdoorsman, wildlife photographer, and conservationist. He quickly dispelled the myth that touching a bird nest or even the baby birds themselves would cause the mother to abandon them. ‘Birds really can’t smell very well. It’s just not their most keen sense,’ he claimed.

Ron then proceeded to explain how to move the nest, in one or a few stages:

  1. Build a new platform of similar height and protection from the elements.
  2. Carefully move the nest 8-10 feet, and no more such that when the mother returns she can hear the chicks and find them readily.
  3. If needed, wait a day or three for the mother to adjust to the new location, then you can move the nest again.

I ran over to the B2 wood shop and was pleased to receive Tim’s immediate assistance. He and I built a nesting platform in the course of a few minutes, using scraps of wood. I returned. Trent and I mounted the sturdy “C” shaped box on an old piece of unistrut. We moved the nest, and then photographed it for Ron’s review. He quickly noted that the top board was too close to the lip of the nest, disabling the mother from walking around the edge to feed her young. Argh! Of course. Trent and I lowered the box and nest and removed the top board. We were pushing into the second hour since the chicks were fed. Ron said it was unlikely they would survive, given their need for constant nourishment.

Birds nest at SAM, Biosphere 2

We replaced the nest on the unistrut, and just before dusk headed up to our apartment on campus.

For the next two days, we didn’t see the mother and assumed the worst.

But when Trent reached over the nest and photographed what we could not see, sure enough, all four chicks were living, each with a thicker down than before. Trent discovered that if he held his gloved finger above the nest and did his best to approximate a bird call, the chicks rose above the rim, necks strained, ready to receive.

Birds on Mars? No, neither living nor in skeletal form. But as we move from this planet to another, it is my hope that we slow down a bit, taking time to remember where we came from, and what we value most as we leave rover tracks, boot prints, and bulldozer cuts to build the first habitats on Mars. –Kai Staats

By |2021-06-03T05:47:01+00:00May 19th, 2021|Categories: Construction|0 Comments
Go to Top